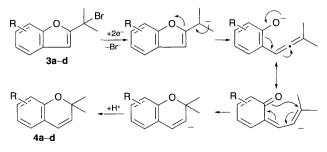

A New Electrosynthesis of 2,2-Dimethylchromenes from 2-(1-Bromo-1-methylethyl)benzofurans

Masao Tsukayama,* Hideyuki Utsumi and Akira Kunugi


Department of Chemical Science and Technology, Faculty of Engineering, The University of Tokushima, Minamijosanjima-cho, Tokushima 770, Japan

Electrolytic reduction of 2-(1-bromo-1-methylethyl)benzofurans in acetonitrile affords the corresponding 2,2-dimethylchromenes in good yields even in the absence of a proton donor and comprises the cleavage of a carbon–bromine bond followed by ring expansion.

Chromenes and their modifications are widely distributed in nature;¹ some are useful as pesticides *e.g.* precocenes I and II.² Chromene derivatives are also important as intermediates in organic syntheses and have been synthesized by a variety of methods.^{1*a*,3} However, as far as we know, there is no direct conversion of benzofurans to benzopyrans.⁴ An electroreductive route has high potential and the electroreduction of benzofurans is of great interest from a mechanistic and synthetic point of view. Here we report the first electrochemical reduction

Scheme 1 Reagents and conditions: i, 2-methylbut-3-yn-2-ol (3 mmol), Pd⁰ (3 mol%), Et₃N/DMF, N₂, 50-80 °C, 1-10 h, 90-95%; ii, BBr₃ (2.6-4 mmol), CH₂Cl₂, -70 to 0 °C, 5-10 min, 30-57%; iii, (MeO)₂SO₂, K₂CO₃, MeCOMe, reflux, 96%

Scheme 2

of 2-(1-bromo-1-methylethyl)benzofuran derivatives 3a-d, resulting in the formation of the corresponding 2,2-dimethylchromenes 4a-d.

The coupling reaction of the halogenated phenols 1 with 2-methylbut-3-yn-2-ol in the presence of Pd^0 under suitable conditions gave the alkynylphenols 2 in high yields.⁵ The cyclization of 2 with BBr₃ afforded 2-(1-bromo-1-methylethyl)-benzofurans **3a-d** in moderate yields (Scheme 1).

An electrolytic cell for macroelectrolysis was composed of three separated compartments. A series of controlled potential macroelectrolyses of 3a-d were carried out at the Hg pool cathode at the potential of the first reduction wave in acetonitrile (MeCN) containing 0.1 mol dm⁻³ tetraethylammonium toluene-p-sulfonate (Et₄NOTs) in the absence or presence of benzoic acid as a proton donor at room temperature. The results of these macroelectrolyses are listed in Table 1, in which the coulometric n-values (electrons per molecule) and the halfwave potential $(E_{1/2})$ also are included. The *n*-values were obtained from the amount of substrate added and the quantity of electricity passed until the electrolysis finished. The benzofuran derivatives **3a-d** were electrochemically reduced to afford the corresponding chromenes 4a-d. The yields of 4 were affected to an extent by the substituent groups of 3. For example, the electroreduction of **3b** bearing an electron-releasing group such as Me led to 4b in high yield, as much as 3a. Although 3c, and 3d [bearing an electron-withdrawing group (MeCO)] were reduced more easily than 3a, 4c and 4d were produced in lower yields than 4a. In spite of the fact that the reduction of 3 to 4 involves the addition of a proton, the addition of a proton donor such as benzoic acid had no significant influence on the yield of **4**. As shown in Table 1, polarography also showed that $E_{1/2}$ for the first reduction was not shifted by the addition of benzoic acid, suggesting that the potential-determining transition state does not contain a proton. The *n*-values for the electroreduction of 3a-d in the absence of the proton donor were about 2, while the *n*-values in the presence of benzoic acid were about 3. The *n*-values of about 2 can be easily understood by the formation of 4. However, no explanation for the increase in the *n*-values by the addition of benzoic acid can be offered at the present time

On the basis of our results, a plausible reaction mechanism is proposed for the electroreduction of 3 to 4 as illustrated in Scheme 2.

Received, 4th January 1995; Com. 5/00028I

References

- (a) G. P. Ellis, Chromenes, Chromanones and Chromones, Wiley, New York, 1977; (b) J. B. Harborne, The Flavonoids: Advances in Research since 1980, Chapman and Hall, New York, 1988.
- 2 W. S. Bowers, T.Ohta, J. S. Cleere and P. A. Marsella, *Science*, 1976, 193, 542.
- 3 (a) T. Ohta and W. S. Bowers, *Chem. Pharm. Bull.*, 1977, 25, 2788; (b)
 R. D. H. Murray and I. T. Forbes, *Tetrahedron*, 1978, 34, 1411; (c) J. O. Asgill, L. Crombie and D. A. Whiting, *J. Chem. Soc., Chem. Commun.*,

Ent	ry Benzofuran	Proton donor (2 equiv.)	$E_{1/2}/V^{a}$	n-Value	Product ^b (yield, %)	
1	O Br	None	-2.6	2.1		87
2	3a	PhCO ₂ H	-2.6	3.0	4a	85
3	O Br	None	-2.6	2.1	o v	92
4	Me 3b	PhCO ₂ H	-2.6	2.6	Me 4b	86
5	O Br	None	-2.3	1.5		60
6	Ac 3c	PhCO ₂ H	-2.3	2.8	Ac 4c	63
7	MeO	None	-2.4	1.8	MeO	73
8	Ac 3d	PhCO ₂ H	2.4	2.8	Ac 4d	61

Table 1 Controlled potential macroelectrolyses of 3a-d at the first reduction potential on Hg pool cathode in MeCN/0.1 mol dm⁻³ Et₄NOTs

^{*a*} The potentials were quoted against an Ag/0.1 mol dm⁻³ AgNO₃ in MeCN reference electrode. ^{*b*} All the products are oils. Yields isolated by silica gel column chromatography are given. Identification of all the products was achieved by ¹H NMR evidence and elemental analysis.

1978, 59; (d) G. Cardillo, M. Orena, G.Porzi and S. Sandri, J. Chem. Soc., Chem. Commun., 1979, 836.

4 A. Mustafa, Benzofurans, Wiley, New York, 1974.

5 (a) K. Sonogashira, Y. Tohda and N. Hagihara, *Tetrahedron Lett.*, 1975, 4467; (b) R. H. Heck, *Palladium Reagents in Organic Syntheses*, Academic, New York, 1985.